

Die Wachstumsformel

Wenn die Zinsen am Ende des Jahres nicht vom Konto abgehoben werden, ergibt sich somit ein neues Gesamtkapital. Die Zinsen werden also im nächsten Jahr mitverzinst. Man spricht dann von Zinseszinsen.

Beispiel: Sparguthaben 30000 €; Zinssatz 2%; 25 Jahre Anlagezeitraum

Wir betrachten nun die Entwicklung für die ersten Jahre. Die folgende Tabelle fasst die Berechnung der Endbeträge für das erste Jahr $\left(K_1\right)$, das zweite Jahr $\left(K_2\right)$,usw. zusammen.

Jahr n	Kapital K _n
0	$K_o = 30000\epsilon$
1	$K_{1} = \underbrace{30000\epsilon}_{K_{o}} + \underbrace{\frac{30000 \cdot 2}{100}}_{Zinsen} \epsilon = 30000 \cdot \left(1 + \frac{2}{100}\right) \epsilon =$
	$K_1 = K_o \cdot \left(1 + rac{p}{100} ight) \; ext{(Kapital } K_1 \; ext{im ersten Jahr auf Grundlage von } K_o ext{)} ext{(*)}$
2	$K_2 = \underbrace{K_1}_{1} \cdot \left(1 + \frac{p}{100}\right)$ (Kapital K_2 im zweiten Jahr auf Grundlage von K_1)
	$K_{2} = K_{o} \cdot \left(1 + \frac{p}{100}\right) \cdot \left(1 + \frac{p}{100}\right) \left(\text{Kapital } K_{2} \text{ im zweiten Jahr auf Grundlage von } K_{o}\right) (**)$
	$K_2 = K_o \cdot \left(1 + \frac{p}{100}\right)^2$
3	$K_3 = \frac{K_2}{m} \cdot \left(1 + \frac{p}{100}\right)$ (Kapital K_3 im dritten Jahr auf Grundlage von K_2)
	$K_{3} = \underbrace{K_{o} \cdot \left(1 + \frac{p}{100}\right) \cdot \left(1 + \frac{p}{100}\right)}_{====================================$
	$K_3 = K_o \cdot \left(1 + \frac{p}{100}\right)^3$
4	$K_4 = K_o \cdot \left(1 + \frac{p}{100}\right)^4$
n	$K_n = K_o \cdot \left(1 + \frac{p}{100}\right)^n$

$$\left(1 + \frac{p}{100}\right) = q$$
 heißt Zinsfaktor oder Wachstumsfaktor

Im vorliegenden Fall gilt also:

$$K_{25} = K_o \cdot \left(1 + \frac{p}{100}\right)^{25} = 30000 \cdot \left(1 + \frac{2}{100}\right)^{25} = 30000 \cdot \left(1,02\right)^{25} \qquad \Rightarrow K_{25} = 49218,18 \in \mathbb{C}$$

Wachstumsformel:

$$K_{n} = K_{o} \cdot \left(1 + \frac{p}{100}\right)^{n}$$

$$K_n = K_o \cdot q^n$$