Mechanik
Wärmelehre - Thermodynamik
Elektrizitätslehre

Optik
Bionik / Brückenbau
Luftfahrt

Technisches Zeichnen
Technische Industrialisierung
Astronomie

Energietechnik
Kernenergie
Digitaltechnik

Nanotechnologie
Schülerseite
Lern-Archiv

Mathematik - Grundlagen für die Mittelstufe
Mathematik - Übungsblätter

Analysis
Analytische Geometrie
Stochastik


Elektrizitätslehre (2)

(Magnetismus)

 Hier findest du alle Inhalte zur Unterrichtseinheit.


Inhalt - Elektrizitätslehre

 

Teil 1:
Elektrische Erscheinungen
1) Elektrizität im Alltag
2) LADEN und ENTLADEN    
3) Nachweis elektrischer Ladungen
Das Elektroskop        
Wie können sich Körper elektrisch aufladen?
Teilchenmodell (Kugelmodell)
Atommodell nach Bohr    
Leiter und Nichtleiter        
Der elektrische Stromkreis
Schaltsymbole
Energie
Was ist Energie?    
Der elektrische Strom    
Elektrischer Strom wird gemessen:    
Das Amperemeter    
Die elektrische Spannung    
Messung der elektrischen Spannung    
Der elektrische Widerstand    
Widerstand und Temperatur    
Das Ohmsche Gesetz    
Der spezifische Widerstand    
Der spezifische Widerstand: Aufgaben    
Die elektrische Leistung    
Die elektrische Arbeit    
Teil 2:

Reihenschaltung und Parallelschaltung    
1. Die Reihenschaltung
  a) Elektrische Ströme in der Reihenschaltung    
  b) Elektrische Spannungen in der Reihenschaltung
  c) Widerstände in der Reihenschaltung
2. Die Parallelschaltung
  a) Elektrische Ströme in der Parallelschaltung
  b) Elektrische Spannungen in der Parallelschaltung
  c) Widerstände in der Parallelschaltung
Der Gesamtwiderstand bei der Parallelschaltung:
Elektrizität  (Übersicht)
Magnetismus (1)
Magnetismus (2)
Ströme erzeugen Magnetfelder
Bewegte Ladungsträger im Magnetfeld
Leiterschleife im Magnetfeld
Der Elektromotor
Die Klingel
Elektromagnetische Induktion
Der Generator (1)
Der Generator (2)
Wechselspannung , Wechselstrom
Das Drehstromnetz
Der Transformator
Aufgaben zum Transformator   

Alle Folien in einem Heft

 

Produktplatzierungen

Hinweis:
Für die Unterrichtseinheit ist die Anschaffung des Skripts für meine Schüler nicht notwendig! Die Folien werden nacheinander bearbeitet und notwendige Materialien ggf. kopiert. Es sind keine Lösungen zu den Aufgaben enthalten.

Publikationen

Hinweis:
Die Inhalte dieser Unterrichtseinheit zielen ab auf die Vermittlung der Grundlagen der Thematik und stellen den Stoff inhaltlich zusammenhängend dar. Den Schülern soll die Struktur der physikalischen Themenbereiche somit im Rahmen des Physikunterrichts der Mittelstufe deutlich vermittelt werden.


Physik: Skriptsammlung





[Download]

Elektrizität (4): [11:42]

Die Reihenschaltung

Im Video wird eine Reihenschaltung von zwei Glühbirnen mit einem Schalter und einer Batterie vorgeführt. Dabei werden die Ströme und die Spannungen gemessen und grundlegende Gesetzmäßigkeiten abgeleitet.

Elektrizität (5): [15:13]

Die Parallelschaltung

Im Video wird die Parallelschaltung von zwei Glühbirnen mit einem Schalter und einer Batterie vorgeführt. Dabei werden die Ströme und die Spannungen gemessen und grundlegende Gesetzmäßigkeiten abgeleitet.




Aufgaben:

1) Was geschieht mit einem Eisennagel in der Nähe eines Magneten? Beschreibe deine  Beobachtung beim Annähern des Magneten an den Nagel und erkläre.
2) Bei der Annäherung von zwei Magneten können unterschiedliche Beobachtungen gemacht werden. Beschreibe und erläutere.
3) Warum ist die Beobachtung aus Aufgabe 2 bei der Annäherung eines Magneten an einen Nagel eine andere? Was kann dabei nicht vorkommen und aus welchem Grund ist das so? 
4) Du kannst einen Magneten selbst herstellen. Wie geht das? Worauf ist zu achten?
5) Untersuche verschiedene Geldstücke mit einem Magneten: 1ct, 2ct, 5ct, 10ct, 20ct, 50ct, 1€, 2€. Welche werden angezogen, welche nicht? Warum ist das so?
6) Mehrere Geldstücke werden gleichzeitig von einem Magneten angezogen. Dabei berühren dich die Geldstücke teilweise nur gegenseitig und gar nicht den Magneten. Warum werden sie trotzdem angezogen?
7) Was passiert beim Herunterfallen eines Magneten, auch wenn er dabei nicht zerbricht?
8) Wenn ein Magnet herunter fällt und dabei zerbricht, ist er dann völlig kaputt? Was ist dann genau passiert und was kann man mit den Bruchstücken anfangen?
9) Das Magnetfeld kann man nicht sehen. Wir können es aber trotzdem sichtbar machen. Beschreibe eine geeignete Vorgehensweise.
10) Bei der Verwendung eines Kompasses ist darauf zu achten, dass man sich nicht in der Nähe von bestimmten Metallen befindet. Wenn man beispielsweise auf einem Kanaldeckel steht, dann kann das zu falschen Ergebnissen führen. Wieso eigentlich?
11) Das Magnetfeld der Erde hat im Laufe der Entwicklungsgeschichte schon mehrfach seine Richtung geändert. Geologen ist diese Erkenntnis zu verdanken. Wie haben sie das herausgefunden? Informiere dich und erläutere!

Elektrizität - Dauermagnetismus: [18:53]

Das Video zeigt grundlegende Versuche zum Thema Dauermagnetismus. Es zeigt die Einstiegsversuche zum Thema Elektromagnetismus.

Infotext - Hans Christian Ørsted


Hans Christian Ørsted, (1777 - 1851) war ein dänischer Physiker, Chemiker und Naturphilosoph. 1820 entdeckte Ørsted die magnetische Wirkung des elektrischen Stromes und gilt als Mitbegründer der Elektrizitätslehre und Elektrotechnik. Er gilt als eine der führenden Persönlichkeiten des Goldenen Zeitalters Dänemarks.

 

Leben

Hans Christian Ørsted wurde als einer der beiden Söhne des Apothekers Søren Christian Ørsted geboren. Da es bis 1814 keine allgemeine Schulbildung gab, erhielten die beiden Söhne hauptsächlich privaten Unterricht, u. a. Deutsch und Mathematik. Durch die Arbeit in der Apotheke seines Vaters, in der er mit zwölf Jahren anfing auszuhelfen, wurde Ørsteds Interesse an der Wissenschaft geweckt. Er erlangte seine weitere Bildung hauptsächlich autodidaktisch und studierte später in Kopenhagen Naturwissenschaften und Pharmazie. 1799 erlangte er den Doktorgrad mit einer Dissertation über Kants Naturphilosophie und wurde später Professor an der Uni in Kopenhagen. Ørsted hatte drei Söhne und vier Töchter. Als er im Alter von 73 Jahren in Kopenhagen verstarb, war er anerkannter Physiker, Chemiker und Astronom.

 

Physik

1820 beobachtete Ørsted während einer Vorlesung die Ablenkung einer Kompassnadel durch einen stromdurchflossenen Draht und entdeckte somit die magnetische Wirkung des elektrischen Stromes. Er unternahm daraufhin hierzu weitere Experimente. Ørsted war nicht der Erste, der einen Zusammenhang zwischen Elektrizität und Magnetismus entdeckte, denn bereits 18 Jahre zuvor (1802) hatte der Italiener Gian Domenico Romagnosi die gleichen Beobachtungen gemacht. Diese fanden aber zu jener Zeit keine Beachtung und gerieten in Vergessenheit. Ørsted erkannte sofort die Tragweite der Verknüpfung beider Phänomene. Er löste damit die Entwicklung der Elektrizitätslehre und Elektrotechnik aus.

 

Philosophie

Ørsted führte als erster den Begriff Gedankenexperiment als Beziehung zwischen mathematischer und physikalischer Erkenntnis bei Kant ein. Die Prägung des Begriffs wird aber Ernst Mach zugeschrieben, da Ørsteds kantische Perspektive nahezu ohne begriffsgeschichtlichen Einfluss blieb.

 

Austausch mit anderen Wissenschaftlern

Johann Wolfgang von Goethe wurde auf die Pionierleistung von Ørsted aufmerksam und lud ihn ein, seine Experimente am Weimarer Hof vorzuführen. Anfangs war André-Marie Ampère skeptisch, ließ sich aber durch die Wiederholungen der Versuche überzeugen. Michael Faraday war von den Forschungsergebnissen beeindruckt und entdeckte elf Jahre später die elektromagnetische Induktion

-----------------------------------

Hinweis: Die Quellenangaben zu diesem Text sind am Ende dieser Internetseite zu finden.


Elektrizität - Oersted-Versuch (1): [7:27]

In diesem Video wird der Oersted-Versuch vorgeführt. Dabei wird auch gezeigt, dass über und unter dem Leiter die Magnetfeldrichtung unterschiedlich orientiert ist.

Elektrizität - Oersted-Versuch (2): [5:38]

Es wird mit der Magnetnadel an verschiedenen Orten und bei unterschiedlichen Stromstärken das Magnetfeld untersucht.


Aufgaben:

  1. Beschreibe den Aufbau und die Durchführung des Oersted-Versuchs und skizziere ihn in dein Heft.
  2. Wann genau ist die magnetische Wirkung beim Oersted-Versuch zu beobachten und warum ändert sich die Orientierung der Nadel?
  3. Wie verlaufen die magnetischen Feldlinien beim Oersted-Versuch während der elektrische Strom fließt?
  4. Was ist die "Rechte-Faust-Regel"?
  5. Wann wurde Hans Christian Oersted geboren?
  6. Vervollständige die Folgenden Sätze:
    a) Ein stromdurchflossener Leiter erzeugt ....
    b) Je größer der Stromfluss, desto ....
    c) Die Richtung des Magnetfeldes hängt von der Richtung des ....


Aufgaben:

  1. Wie lässt sich das Magnetfeld um einen elektrischen Leiter sichtbar machen?
  2. Magnetfeldlinien verlaufen vom Nordpol zum Südpol. Ist das bei einem stromdurchflossenen Leiter auch so? Wo liegt dann der Nordpol?
  3. Eine elektrische Leitung wird von einem Strom durchflossen. Wie lässt sich das Magnetfeld eines geraden Leiters auf einfache Weise vorhersagen? Was lässt sich über das Magnetfeld einer stromdurchflossenen Leiterschleife sagen?
  4. Auf einem Schrottplatz werden Elektromagneten verwendet. Könnte man das nicht auch mit einem starken Dauermagneten machen?
  5. Vergleiche das Magnetfeld einer stromdurchflossenen Spule mit einem Dauermagneten. Beschreibe die Magnetfelder.
  6. Wovon hängt das Magnetfeld einer Spule ab? Wie kann man ein sehr starkes Magnetfeld erzeugen?
  7. Warum ist die Entdeckung von Hans Christian Ørsted wichtig für die Messung des elektrischen Stromes mit einem Amperemeter? (Sieh dir dazu die Folie zum Amperemeter nochmal genau an.)

Infotext - Lorentz-Kraft | H. A. Lorentz


Lorentz-Kraft

Die Lorentz-Kraft ist die Kraft, die magnetische Felder auf Ladungsträger ausüben, wenn sich diese relativ zum Feld bewegen. Es spielt dabei keine Rolle, ob sich die Ladungsträger dabei frei im Raum bewegen oder als elektrischer Strom durch einen Leiter fließen. Sie ist nach dem niederländischen Mathematiker und Physiker Hendrik Antoon Lorentz benannt. 
Die magnetische Komponente der Kraft ist am größten, wenn die Bewegungsrichtung der Ladung senkrecht zu den magnetischen Feldlinien verläuft, und gleich Null, wenn sich die Ladung entlang einer Feldlinie bewegt. Sie wirkt immer senkrecht zur Bewegungsrichtung der Ladung und zu den Magnetfeldlinien. Ihre Wirkungsrichtung kann mit der Drei-Finger-Regel bestimmt werden.

 

Hendrik Antoon Lorentz

Hendrik Antoon Lorentz (1853 - 1928) war ein niederländischer theoretischer Physiker. Er studierte an der Universität Leiden Mathematik und Physik. Lorentz fand eine Anstellung als Lehrer für Abendkurse an der Oberschule, die er besucht hatte. Während dieser Zeit fertigte er seine Doktorarbeit über Beugung und Brechung von Licht an und promovierte 1875 im Alter von 22 Jahren. Lorentz führte in seiner Doktorarbeit bereits neue Konzepte auf den Gebieten der Elektrizität und des Lichts ein, seine weiteren Arbeiten revolutionierten die Vorstellungen von der Natur der Materie. Er besetzte 1878 als Professor für theoretische Physik einen eigens für ihn eingerichteten Lehrstuhl an der Universität Leiden, der er zeit seines Lebens treu blieb. 1902 teilte sich Lorentz mit dem niederländischen Physiker Pieter Zeeman den Nobelpreis für Physik. Hendrik Antoon Lorentz gilt als führende Persönlichkeit der theoretischen Physik seiner Zeit. Auch mit Albert Einstein fand ein intensiver Austausch statt. Lorentz und Albert Einstein hegten von Beginn an eine große Wertschätzung füreinander. Sogar ein Mondkrater ist nach ihm benannt worden.

 

-----------------------------------

Hinweis: Die Quellenangaben zu diesem Text sind am Ende dieser Internetseite zu finden.


Elektrizität: [10:00]

Die Lorentz-Kraft

Gezeigt werden die Eigenschaften eines stromdurchflossenen Leiters im Magnetfeld. Die Wirkung der Kraft auf den Leiter wird im Versuch vorgeführt und in der Zusammenfassung die Drei-Finger-Regel der rechten Hand erklärt.


Aufgaben:

  1. Ein Elektron bewegt sich in einem äußeren Magnetfeld. Was passiert dabei? Wovon hängt die Wirkung auf das Elektron ab? 
  2. Warum bewegt sich ein stromdurchflossener Leiter in einem äußeren Magnetfeld? Was passiert bei der Änderung der Stromrichtung? 
  3. Was versteht man unter der "wirksamen Leiterlänge"?
  4. Im Amperemeter (siehe Folie auf Teil 1 – Elektrizität) ist eine drehbar gelagerte Spule mit dem Zeiger des Messinstruments verbunden. Die Spule hat sehr viele Windungen. Warum ist das besser als wenn man nur eine Windung verwenden würde?
  5. Im Amperemeter ist eine Rückstellfeder eingebaut. Wofür ist sie wichtig? Beschreibe ihre Funktion während und nach dem Messvorgang.

Infotext - Michael Faraday


Michael Faraday (1791 - 1867) war ein englischer Naturforscher, der als einer der bedeutendsten Experimentalphysiker gilt. Faradays Entdeckungen der elektromagnetischen Induktion legten den Grundstein der Elektroindustrie. 


Aufgewachsen in einfachen Verhältnissen machte Faraday eine Ausbildung als Buchbinder. Faraday erwies sich als ein geschickter, aufgeschlossener und wissbegieriger Lehrling. Er erlernte das Buchbinderhandwerk schnell und las aufmerksam viele der zum Binden gebrachten Bücher. Darunter befanden sich auch eine populäre Einführung in die Chemie und ein Beitrag über Elektrizität. Der von der Naturforschung begeisterte Faraday fand später eine Anstellung als Laborgehilfe an der Royal Institution, die zu seiner wichtigsten Wirkungsstätte wurde. 

 

 „Elektromagnetische Rotation“

Faraday wiederholte in seinem Labor Experimente von Ørsted und, André-Marie Ampère. 1821 gelang Faraday zum ersten Mal ein Experiment, bei dem sich ein stromdurchflossener Leiter unter dem Einfluss eines Dauermagneten um seine eigene Achse drehte. Die sogenannte „elektromagnetische Rotation“ war eine wesentliche Voraussetzung für die Entwicklung des Elektromotors.

 

Elektromagnetische Induktion

In dem im September 1820 begonnenen Labortagebuch notierte er am 28. Dezember 1824 erstmals ein Experiment, mit dem er versuchte, mit Hilfe von Magnetismus Elektrizität zu erzeugen. 1831 führte Faraday weitere Versuche mit Magneten und elektrischem Strom durch und entdeckte dabei die elektromagnetische Induktion. Während seiner an nur elf Tagen durchgeführten Experimente fand er heraus, dass ein zylindrischer Stabmagnet, der durch eine Drahtwendel bewegt wurde, eine elektrische Spannung in dieser induzierte. Nach diesem Grundprinzip arbeiten elektrische Generatoren. Er hatte dabei ein Prinzip angewandt, das den später entwickelten Transformatoren zugrunde liegt.

 

Im Labor der Royal Institution führte Faraday seine wegbereitenden chemischen und elektromagnetischen Experimente durch. In ihrem Hörsaal trug er mit seinen Weihnachtsvorlesungen dazu bei, neue wissenschaftliche Erkenntnisse zu verbreiten. 1833 wurde Faraday zum Professor für Chemie ernannt. Faraday führte etwa 30.000 Experimente durch und veröffentlichte 450 wissenschaftliche Artikel.

-----------------------------------

Hinweis: Die Quellenangaben zu diesem Text sind am Ende dieser Internetseite zu finden.


Elektrizität: [5:30]

Der Elektromotor

Anschaulich wird die Funktionsweise eines Elektromotors erklärt.


Aufgaben:

  1. Nenne die Bestandteile eines Elektromotors und beschreibe ihre Funktion.
  2. Nenne fünf Anwendungen für einen Elektromotor.
  3. Dreht sich der Rotor immer zuverlässig beim Einschalten der elektrischen Spannung oder gibt es beim Aufbau aus Folie 27/28 / „Video: Der Elektromotor“ auch Probleme zu beachten? Hinweis: Welche Ausrichtung sollte der Rotor im günstigsten Fall haben?
  4. Könnte man auch einen Elektromotor ohne einen Dauermagneten bauen? Wie müsste man das machen?
  5. Auch vor der Erfindung des Elektromotors wurden in Fabriken schon große Maschinen betrieben. Welche wichtige Erfindung war für viele Jahrzehnte für die Industrie von zentraler Bedeutung?

Querverweis: Siehe auch → Themenseite: Technische Industrialisierung

Bildergalerie - Elektrizität (3)

(Abbildungen mit freundlicher Genehmigung des DEUTSCHEN MUSEUMS München)




Aufgaben:

  1. „Induktion“ wird aus dem Lateinischen abgeleitet. Was bedeutet das Wort und wie hängt es mit den gezeigten Versuchen zusammen?
  2. Beschreibe die Methode zur Erzeugung einer elektrischen Spannung mit Hilfe der elektromagnetischen Induktion. Was benötigt man dazu und wie muss man dabei vorgehen?
  3. Welcher bedeutende Naturforscher beschäftigte sich mit den Zusammenhängen der Induktion, wann lebte er und wo wurde er geboren? 
  4. Beim Versuch hat der elektrische Strom nicht immer die gleiche Richtung. Der Zeiger des Spannungsmessgerätes bewegte sich während des Versuchs nach rechts und nach links. Was ist der Grund dafür?
  5. Welcher Zusammenhang besteht zwischen der Induktion und dem Versuch von C. Oersted?
  6. Ein Stromkreis besteht aus Batterie, Schalter und Glühbirne. Die Batterie soll ersetzt werden. Was könnte man tun? Welche Möglichkeiten gibt es und was müsste man dabei beachten?
  7. Beim Elektromotor wurde elektrische Energie in mechanische Energie (Drehbewegung) umgewandelt. Kann eine Drehbewegung auch einen elektrischen Strom bewirken? Wie könnte man dabei vorgehen?


Aufgaben:

  1. Welche wichtigen Bestandteile benötigt man zum Aufbau eines Generators?
  2. Wir haben den Generator in zwei verschiedenen Varianten betrieben. Erläutere den Unterschied im Aufbau und in der Funktionsweise. Beschreibe dabei, wie sich die Elektronen in einem Kabel des Stromkreises bewegen.
  3. Welcher Unterschied besteht zwischen der elektrischen Spannung einer Batterie und der Spannung an den Kontakten eines Generators? 
  4. Der Dynamo eines Fahrrads ist auch ein Generator. 
    a) Leuchtet die Lampe beim Betrieb des Dynamos immer gleich hell? (Erläutere deine Antwort!)
    b) Was bemerkst du noch bei der Verwendung des Dynamos?
    c) Welche Energieformen spielen beim Betrieb des Dynamos eine Rolle?
  5. Im Versuch wurde ein Oszilloskop verwendet. Was ist das und warum wurde es benötigt?

Querverweis (Mathematische Grundlagen): Video → Trigonometrische Funktionen

Elektrizität: [8:37]

Der Generator

Die Funktion eines Generators wird beschrieben und anschaulich vorgeführt. Weiterhin wird der Induktionsstrom gemessen, mit und ohne Verwendung eines Polwenders und die zugehörigen Induktionsspannungen mittels eines Oszilloskops anschaulich dargestellt.

........................................................................................................

Abonnieren:



Aufgaben:

  1. Was bedeuten die Abkürzungen „AC“ und „DC“?
  2. Beschreibe die Bewegung der Elektronen beim Wechselstrom und beim Gleichstrom und vergleiche sie miteinander.
  3. Aus welchem Grund benötigt man zur Untersuchung der Ausgangsspannung beim Generator ein Oszilloskop?
  4. Könnte man die Spannung beim Generator auch mit einem Voltmeter mit der folgenden Aufschrift messen:  10V =  ? Erläutere deine Überlegungen und begründe deine Antwort.
  5. Im Video zum Generator wurde die Ausgangsspannung mit dem Oszilloskop dargestellt. Skizziere die Darstellung des Bildschirms in deinem Heft und beschrifte die Achsen mit den entsprechenden physikalischen Größen.
  6. Wie kann man sich die Bewegung der Elektronen im Stromkreis bei einem Wechselstrom mit dem Wassermodell anschaulich vorstellen? (siehe Video)
  7. In unserem Versorgungsnetz wird Wechselspannung vom Energiezulieferer bereitgestellt. Welche beiden Angaben beschreiben diese Wechselspannung und sind deshalb hierbei für uns wichtig?
  8. Berechne die Spitzenwerte für die folgenden Effektivspannungen: 2V;  5V;  150V;  230V
  9. Berechne die Effektivwerte für die folgenden Spitzenwerte: 3V;  9V;  200V;  0,07V

Aufgaben:

  1. Beschreibe den Aufbau und die Funktionsweise eines Transformators.
  2. Die Primärspule eines unbelasteten Transformators, die an das 230-V-Netz angeschlossen ist, hat 1000 Windungen. Berechne jeweils die Spannungen U2 an den Enden der Sekundärspule und die zugehörigen Übersetzungsverhältnisse des Transformators, wenn die Sekundärspule:
    a) 100 Windungen,   
    b) 500 Windungen,
    c) 10000 Windungen, 
    d) 20000 Windungen
    hat.
  3. Ein unbelasteter Transformator soll eine Wechselspannung von 12V auf 48V transformieren. Für den Aufbau stehen Spulen mit 250 Windungen, 500 Windungen, 1000 Windungen und 2000 Windungen zur Verfügung. Wie kann der Transformator aufgebaut werden? Begründe deine Auswahl und erstelle einen Schaltplan.
  4. Das Übersetzungsverhältnis eines Transformators beträgt 0,008 bei einer Windungszahl auf der Sekundärseite von 5000. Es soll eine Ausgangsspannung auf der Sekundärseite von 1200 V erzeugt werden. Berechne die anzulegende Spannung an der Primärspule des Trafos. Gib die Windungszahlen der Spulen des Trafos an.


Infos zum Thema:

Computer und Roboter



Wärmelehre - Thermodynamik
Optik
Astronomie


Anzeige


Anregungen für Elektronikinteressierte

Hinweis: Es werden keine Bücher oder sonstige, hier benannte Materialien im Unterricht verwendet oder benötigt. 

Alle von mir erstellten Materialien stehen für Bildungszwecke frei zur Verfügung, dürfen allerdings nicht von jemand anderem kommerziell vertrieben werden.

Hinweis: Es werden keine Bücher oder sonstige, hier benannte Materialien im Unterricht verwendet oder benötigt. 



Quellenangaben zu den Inhalten auf dieser Seite


Infotext ([07/23] Elektrizität)

Creative Commons Lizenzvertrag Dieser Text basiert auf dem Artikel Hans Christian Ørsted aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons CC-BY-SA 3.0 Unported (Kurzfassung). Der Text wurde von Andreas Rueff überarbeitet und auf der Grundlage didaktischer Überlegungen angepasst und gekürzt. In der Wikipedia ist eine Liste der Autoren verfügbar.

Infotext ([25] Elektrizität)

Creative Commons Lizenzvertrag Dieser Text basiert auf den Artikeln Lorentzkraft und Hendrik Antoon Lorentz aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons CC-BY-SA 3.0 Unported (Kurzfassung). Der Text wurde von Andreas Rueff überarbeitet und auf der Grundlage didaktischer Überlegungen angepasst und gekürzt. In der Wikipedia ist eine Liste der Autoren verfügbar.

Infotext ([27/28] Elektrizität)

Creative Commons Lizenzvertrag Dieser Text basiert auf den Artikeln Michael Faraday und Hendrik Antoon Lorentz aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons CC-BY-SA 3.0 Unported (Kurzfassung). Der Text wurde von Andreas Rueff überarbeitet und auf der Grundlage didaktischer Überlegungen angepasst und gekürzt. In der Wikipedia ist eine Liste der Autoren verfügbar.